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Abstract

This article provides a comprehensive review of the application of Artificial Intelligence (AI) in the 
design and optimization of microsystem integrated circuits, particularly for robotic systems. The 
study covers AI-based methods for both single-field and multi-field designs, focusing on the chal-
lenges of optimizing electromagnetic, thermal, and mechanical performance in compact, highly in-
tegrated systems. Additionally, the use of Physics-Informed Neural Networks (PINNs) is highlighted 
for improving the accuracy of multi-field simulations while reducing computational costs and data 
requirements. The main findings emphasize the advantages of combining AI with physical principles 
to enhance design efficiency, improve prediction accuracy, and minimize data usage in the develop-
ment of advanced microsystems.
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Introduction

With their advantages in convenience, efficiency, and auton-
omous operation, robots have found widespread applications 
across various fields, including healthcare, engineering machin-
ery, ocean exploration, aerospace, and agriculture [1,2]. Inte-
grated Circuits (ICs), as the core component of robotic control 
systems, are crucial in determining whether a robot can suc-
cessfully perform in complex terrains and high-demand work 
environments. In recent years, the rising demand for small-
scale robots has driven IC development toward miniaturiza-
tion, high performance, and enhanced reliability. However, as 
Moore’s Law gradually loses its effectiveness, the traditional 
method of improving IC integration by reducing feature size has 
become less viable. This shift has made three-dimensional (3D) 
ICs a promising path for achieving miniaturization and improved 
performance. With 3D integration, coupled multi-field effects 
become more pronounced in limited volumes, and as technol-
ogy advances, the complexity and precision required in design 
continue to increase [1-3].

Traditional IC design processes often depend heavily on man-
ual input, making them both time-consuming and error-prone2 
[1]. With rapid advancements in machine learning, deep learn-
ing, and algorithm optimization, intelligent design tools have 
become a major trend in the IC design domain. By incorporat-
ing intelligent design techniques, design automation tools can 
significantly enhance design efficiency, improve quality and ac-
curacy, reduce design cycles, and cut costs. Synopsys, an indus-
try leader in Electronic Design Automation (EDA), has launched 
DSO.ai, the first AI-driven design tool in the EDA sector, en-
abling the successful design of several micro-systems. Similarly, 
Cadence has introduced the JedAI platform, which represents a 
technological shift in EDA by leveraging past design experiences 
and applying artificial intelligence to optimize future designs, 
specifically in Power, Performance, and Area (PPA). Additionally, 
Google has utilized AI to optimize the physical layer of chips. 
The rapid evolution of AI is revolutionizing microsystem design 
methodologies, driving a transition from traditional human-led 
analysis and optimization to AI-driven, data-centric intelligent 
design approaches in microsystems.
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The convergence of robotic technology and intelligent IC de-
sign opens up new possibilities for the future of automated and 
intelligent systems [1]. By leveraging AI’s non-linear, adaptive, 
and self-learning capabilities to understand the relationships 
between IC design parameters and outputs, end-to-end intelli-
gence can be achieved from functional design to physical imple-
mentation, greatly enhancing system flexibility and adaptability 
[1,2]. Machine learning-based optimization methods are espe-
cially valuable when system complexity rises, requiring simulta-
neous optimization of numerous input parameters, as is often 
the case with 3D ICs and complex systems [1,2]. Furthermore, 
intelligent design tools aid engineers in identifying hidden de-
sign flaws within intricate environments, offering intelligent de-
cision support and enabling the creation of high-performance, 
highly reliable ICs [1,2].

The intelligent single-field and multi-field design of microsys-
tems is a crucial component of integrated microsystem design, 
yet a systematic summary of methods and corresponding appli-
cation scenarios is lacking. This paper focuses on summarizing 
the applications of artificial intelligence technology in single-
field and multi-field microsystem design, as illustrated in (Fig-
ure 1). The main contributions of this paper are as follows: (1) 
The application of traditional artificial intelligence methods in 
single-field microsystem design is summarized; (2) The applica-
tion of traditional artificial intelligence algorithms in integrated 
multi-field microsystem design is reviewed. (3) The use of AI 
methods combined with physical equations in multi-field micro-
system design is examined; (4) the characteristics and applica-
tion scenarios of various methods are comparatively discussed. 
This work provides a valuable reference for efficient, rapid, and 
intelligent integrated microsystem design in the future.

Figure 1: Machine learning approaches to intelligent design of 
microsystems for robotics.

Machine learning-based approach to single-field design of 
microsystems

The development of 3D microsystem technology has signifi-
cantly advanced robotics by providing effective solutions to en-
hance electronic system performance while reducing size [1]. 
However, challenges persist in microsystem design, including 
signal crosstalk, substantial thermal accumulation, and com-
plex stress distribution, all of which impact overall microsystem 
performance [2]. To address these issues, researchers have in-
tegrated various machine learning methods to optimize micro-
system and component design for tasks such as eye diagram 

prediction [3], crosstalk analysis, frequency domain analysis, 
parasitic parameter extraction, and temperature and stress dis-
tribution [4,5], thereby improving modeling efficiency.

After robotic integration, various electromagnetic devices 
are incorporated into compact volumes, making crosstalk is-
sues between components more pronounced and increasing 
the complexity of parasitic parameter interactions. As a result, 
many researchers have integrated neural networks with evolu-
tionary methods to improve the electrical performance of these 
designs. To address the time-intensive nature of traditional 
Monte Carlo modeling methods and the over-design associ-
ated with worst-case scenarios, [4] proposed an eye diagram 
prediction model based on Deep Neural Networks (DNN), and 
the concept of the proposed channel characteristic-based DNN 
model is shown in (Figure 2A). Compared to other regression 
methods, the proposed method reduced the error rates of eye 
height and eye width by 22.7% and 43.9%, respectively, while 
also lowering computational costs by 8.0%-9.4%. To reduce the 
amount of labeled data. Proposed [4] a rapid training semi-su-
pervised learning method based on a Hybrid Neural Network 
(HNN) to predict eye diagram metrics, and the proposed meth-
od is shown in (Figure 2B). This method reduces the labeled 
training data by 50%, improving the prediction accuracy of eye 
height and eye width by 32.29% and 33.55%, respectively. Opti-
mizing crosstalk in high-speed interconnect structures is crucial 
for accurate signal transmission in integrated circuits [4]. Devel-
oped [4] an artificial neural network model to predict near-end 
and far-end crosstalk in coupled microstrip transmission lines. 
Proposed [4] a neural network-based rapid prediction method 
for RLGC matrices of microstrip lines, and the ANN model for 
channel RLGC components is shown in (Figure 2C), achieving 
a prediction error of less than 5%. Additionally, genetic algo-
rithms have been used to optimize transmission line loss and 
crosstalk, with the optimized parameters subsequently verified 
through CST electromagnetic simulation models. Proposed [4] 
a bonding line interconnect performance optimization method 
that combines neural networks and genetic algorithms, and 
the diagram of the presented bonding-wire compensation 
structure is shown in (Figure 2D). The optimization time is re-
duced from 7.63 hours to 0.2 hours and significantly enhanc-
ing efficiency. At the same time, the high integration density of 
microsystems within miniature robots exacerbates thermal ac-
cumulation effects in compact volumes, while the complexity 
of heat dissipation structures rapidly increases. Consequently, 
intelligent thermal design technologies based on neural net-
works and evolutionary methods have proven particularly valu-
able for minimizing computational resource use and time costs 
during optimization. Introduced [4] a hybrid prediction method 
for microchannel cooling performance that combines artificial 
neural networks with genetic algorithms, particle swarm opti-
mization, and other algorithms such as artificial hummingbird 
and zebra algorithms. The workflow of all models is shown in 
(Figure 2E), and the model, trained on six critical microchannel 
input parameters, used heat resistance and pumping power as 
target outputs, reducing average errors for heat resistance and 
pumping power by 88.7% and 81.4%, respectively. Developed 
[4] a convolutional neural network-based method for predict-
ing anisotropic equivalent thermal conductivity, and the frame-
work of the proposed method is shown in (Figure 2F). This mod-
el achieves highly accurate predictions of the effective thermal 
conductivity of semiconductor packaging substrates within 
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2-3% error, thereby reducing human uncertainty and labor re-
quirements. Introduced [4] a modeling method that combines 
genetic algorithms with computational fluid dynamics (CFD) to 
improve cooling efficiency through geometric modifications. By 
optimizing plate fin heat sinks using multi-objective genetic al-
gorithms and CFD simulations, they achieved a 65% reduction 
in thermal accumulation. Developed [4] a microchannel control 
method that combines Bayesian optimization and artificial neu-
ral networks, mapping microchannel flow rates with power and 
temperature, and schematic of a 3-D IC with integrated MFHS is 
shown in (Figure 2G). This approach intelligently reduces pump 
power consumption while maintaining the temperature limits 
of 3D integrated circuits using microfluidic coolers and layered 
cooling. With the integration of microsystems, diverse materi-
als are compacted into small volumes, creating significant stress 
issues due to varying thermal expansion coefficients and sub-
stantial thermal accumulation. To predict stress distribution 
within microsystems rapidly, researchers have explored intel-
ligent stress design methods for interconnect structures and 
packaging [4]. At IBM have pioneered AI-Design for Reliability 
(AI-DfR), which utilizes neural networks to predict wafer-level 
chip-scale package (WLCSP) solder joint fatigue life. Cross-
section of a module level flip-chip package is shown in Figure 
2H. Similarly, developed [4] an artificial neural network model 
trained on a database generated through finite element analy-
sis for predicting WLCSP solder joint fatigue life, achieving over 
90% accuracy and incorporating solder creep material models. 
Proposed [4] a three-dimensional board-level drop response 
model for Ball Grid Array (BGA) package structures based on 
a backpropagation neural network, and the calculation flow of 
the BP neural network structure is shown in (Figure 2I). Com-

Figure 2: (A) Concept of the proposed channel characteristic-based 
DNN model for estimating EH and EW [19]; (B) The structure of 
DNN to predict the EH and EW [20]; (C) ANN model for channel 
RLGC components [23]; (D) Diagram of the presented bonding-wire 
compensation structure [24]; (E) The workflow of all models [25]; 
(F) The framework of the proposed method [26]; (G) Schematic of 
a 3-D IC with integrated MFHS [28]; (H) Cross-section of a module 
level flip-chip package [29]; (I) Calculation flow of the BP neural 
network structure [31].

pared to traditional finite element simulations, the proposed 
method improves computational efficiency by more than three 
orders of magnitude. Proposed [4] a rapid prediction method 
for runtime reliability management using artificial neural net-
works. This method leverages temperature and stress data for 
offline training to develop a neural network-based stress model. 
The prediction error is less than 7% when compared with finite 
element method errors.

Table 1: Comparison of methods applied to single-field design in microsystems

Ref Application Method Input Output

[19] Predict and optimize eye diagrams DNN Geometric parameters of channel Eye height and eye width

[20] Predict interconnected eye diagrams DNN+CNN Channel geometry parameters Eye height and eye width

[22] Predict coupled transmission line crosstalk ANN Transmission line geometric parameters Near-end crosstalk, far-end crosstalk

[23] Predict the microstrip line RLGC ANN Transmission line geometric parameters RLGC matrix of the channel

[24]
Predict and optimize wire-Bonding Compensation 
Structure

ANN+GA Structure parameters Operating frequency

[25]
Predict and optimize microchannel thermal  
resistance and pumping power

ANN+GA, PSO, 
AHA, ZOA

Geometric parameters of the microchannel Thermal resistance, pumping power

[26]
Predict the anisotropic equivalent thermal  
conductivity of the package

CNN
Substrate material properties, material 
location

Equivalent thermal conductivity

[27] Optimize the efficiency of finned heatsinks GA Geometric parameters of the heat sink Efficiency of finned heatsinks

[28]
Optimize the pump power of the microfluidic heat 
sink

ANN+BO
Temperature at time “t−1” Power at time “t” 
and Flow rate at time “t

Pump power consumption and  
temperature

[29] Predict package mechanical behavior ANN
Laminate chip-site CTE, Laminate fan-out 
CTE, Die to sealband distance_x, Die to seal-
band distance_y, Stress free temperature

Die corner shear stress, Die principal 
stress, TIM strain, Maximum laminate 
Warpage, Sealband peeling stress and 
Laminate warpage nodal output

[30]
Predict maximum creep strain and fatigue life of 
wafer-level chip scale packages

ANN
Chip thickness, PCB thickness, and solder 
pitch

Maximum creep strain and fatigue life

[31]
Prediction board level BGA impact corresponding 
life

ANN Node drop Angle, x, y, and z coordinates
von Mises stress, PEEQ, warping  
deformation, energy density of nodes

[32] Predictive stress ANN The temperature around each TSV Maximum stress
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The above discussion highlights the application of neural net-
works and evolutionary algorithms in addressing electromag-
netic, thermal management, and stress challenges in miniature 
robots, focusing on solving issues such as crosstalk, thermal ac-
cumulation, and stress due to the high integration density of 
components, with a detailed comparison shown in (Table 1). 
In electromagnetic design, researchers have combined neural 
networks and genetic algorithms to optimize transmission lines, 
crosstalk, and loss, significantly reducing computation time and 
errors. Additionally, these techniques have been widely applied 
to thermal management and stress prediction, such as through 
microchannel cooling models, heat sink optimization, and stress 
design, leading to significant improvements in cooling perfor-
mance and stress prediction accuracy. Overall, the integration 
of neural networks and evolutionary algorithms demonstrates 
substantial potential in reducing computation time, minimizing 
data requirements, and enhancing design efficiency.

Machine learning-based approach to multifield design of 
microsystems

In the single-field intelligent design of microsystems, re-
searchers have achieved rapid prediction and intelligent opti-
mization of electrical performance, thermal distribution, and 
stress distribution. However, as microsystem dimensions shrink, 
integration levels increase, and signal transmission frequencies 
rise, the interactions and couplings between multiple physical 
fields within a small volume become crucial factors affecting 
the overall performance of microsystems. Moreover, due to the 
coupling of these physical fields, traditional numerical methods 
often require extensive resources and costs to solve, while con-
ventional equivalent modeling methods encounter difficulties 
in accuracy and modeling complexity. Consequently, research 
on intelligent multi-field design methods for microsystems 
based on machine learning has gradually emerged.

ANSYS introduced a new EDA platform that utilizes machine 
learning-assisted methods to achieve design and optimization 
of temperature and IR drop in three-dimensional integrated 
circuits (3D ICs), system testcase with thermal heatmap and 
assembly stackup is shown in (Figure 3A) [4]. Proposed [4] an 
electro-thermal-mechanical coupling M3D array design method 
based on artificial neural networks. Compared with standard BP 
neural networks, the threshold and weight prediction models in 
this approach demonstrated superior advantages in both pre-
diction time and accuracy. Used [4] a combination of machine 
learning and Bayesian optimization algorithms for simulating 
and optimizing the electrothermal performance of three-di-
mensional integrated circuits and systems, Configuration of a 
3-D system for optimization is shown in (Figure 3b). By taking 
five design parameters as input variables and outputting the 
maximum temperature, temperature gradient, and weighted 
clock skew, this approach reduced computation time by 31.1% 
compared to traditional simulation methods, with optimization 
results showing superior performance relative to other meth-
ods. However, Park’s approach requires lengthy numerical sim-
ulations with each iteration, resulting in extended optimization 
time.

Proposed [4] a multi-objective optimization method for the 
thermal stress of TSV arrays, combining BP neural networks 
with Particle Swarm Optimization (PSO), flowchart of the devel-
oped intelligent optimization method for the parameters of TSV 
is shown in (Figure 3C). This method optimizes the tempera-
ture, stress, and thermal expansion deformation of TSV arrays, 
reducing simulation time from 2 hours to 70 seconds. Proposed 

[6] an intelligent multi-field collaborative optimization method 
for TSV arrays, using datasets obtained from finite element 
methods and a Genetic Algorithm-Based Backpropagation Neu-
ral Network (GA-BPNN) to establish a mapping relationship 
between the design parameters and performance parameters 
of TSV arrays, developed method flowchart is shown in (Fig-
ure 3D). Under performance constraints, they utilized particle 
swarm optimization for multi-field collaborative optimization. 
Simulation results indicated that the maximum deviation was 
only 3.04%, and, compared to traditional methods, search and 
computation times were reduced by 99.52% and 83.86%, re-
spectively. Established [4] a finite element model of a 3D IC de-
vice with inner pin microchannels and full-copper interconnec-
tions, performing simulations and applying the RSA method for 
multivariate nonlinear fitting of the results. This produced an 
RSA surrogate model of the objective function, verified for ac-
curacy. The model was solved and optimized using the NSGA-II 
program in MATLAB, achieving design parameters for optimal 
solutions A and B, which reduced resistance by 86.4% and maxi-
mum stress by 29.4%. From [4] ASE, explored the potential of 
neural networks in predicting warpage in fan-out wafer-level 
packaging. Ante proposed [4] a microchannel design method 
based on multi-objective optimization algorithms that can ac-
curately predict the optimal microchannel heat sink design. 
Compared to traditional optimization methods, this approach 
achieved more than a 10% reduction in temperature and over 
a 25% reduction in pressure. Additionally, [4] proposed an RDL 
modeling simulation method based on machine learning, the 
overall ANN modeling flow is shown in (Figure 3E). Using neural 
networks to construct equivalent material models of subsets, 
they transformed all subsets into elements for temperature and 
stress simulation, achieving a maximum error of 2.81%. This ap-
proach accurately considers layout impacts in advanced packag-
ing design, enhancing design reliability with minimal resource 
utilization.

Figure 3: (A) System testcase with thermal heatmap and assembly 
stackup [33] (B) Configuration of a 3-D system for optimization [35]; 
(C) Flowchart of the developed intelligent optimization method for 
the parameters of TSV [36]; (D) Developed method flowchart [6]; 
(E) Overall ANN modeling flow [40].

In summary, the integration of machine learning and optimi-
zation algorithms into the design and analysis of 3D integrated 
circuits and packaging has led to significant advancements in 
accuracy, efficiency, and overall system performance. The use of 
neural networks, genetic algorithms, and Bayesian optimization 
has shown promising results in reducing computation times and 
improving the prediction of key metrics such as temperature, 
stress, and warpage, with a detailed comparison shown in (Ta-
ble 2). These intelligent design methods offer clear advantages 
over traditional approaches, particularly in handling the com-
plexity of multi-physical field interactions in advanced microsys-
tem structures. As a result, machine learning-assisted methods 
are becoming essential for achieving optimal design outcomes 
while minimizing resource use.



Journal of Artificial Intelligence & Robotics

5 www.joaiar.org

Table 2: Comparison of methods applied to multi-field design in microsystems.

Ref Application Method Input Output

 [33] Predict and optimize 3D IC temperature and IR drop - Geometric parameters of the chip Temperature and IR drop

[34] Predicting the M3D array multifield distribution ANN
Temperature of monolithic inter-tier 
vias 

Max stress of monolithic inter-tier 
vias 

[35] 
Predict and optimize the peak temperature, time jitter of 
the 3D IC

ANN+ Bayesian Air velocity, material thickness, type
Maximum temperature, 
temperature gradient, clock jitter

[36] Predict and optimize the thermal stress of TSV arrays BPNN+PSO
Radius, silica thickness, and pitch 
of TSVS

Maximum stress, peak 
temperature, displacement

[6] 
Predict and optimize the multifield performance of TSV 
arrays

GA-BPNN+PSO
Radius, height, oxide thickness, 
pitch, and offset Angle of TSV

S-parameter, peak temperature, 
peak stress

[37] 
Predict and optimize the resistance and stress of the 
microchannel and copper interconnection

Response surface 
approximation + 

MOEA

Radius, microbump thickness, and 
microbump height of TSV

Maximum thermal stress, TSV 
conductivity

[38] Predicting the warping of wafer-level packages ANN+ Bayesian
Chip CTE, fan-out CTE, chip position, 
package stress-free temperature

Shear stress, principal stress, 
material strain, warping degree

[39] 
Predict and optimize microchannel heat dissipation and 
stress

ANN
Structural parameters of the 
microchannel

Peak temperature, stress

[40] Predict the temperature and stress of the RDL layout ANN RDL subset Temperature, maximum stress

Physics-informed design methods for microsystems

In the design of microsystems, the integration of physics-
informed approaches has become increasingly important to 
accurately capture complex multi-physics interactions that are 
difficult to represent with purely data-driven models. Physics-
informed methods embed domain-specific knowledge directly 
into the modeling process, ensuring that solutions are consis-
tent with fundamental physical laws, and overcoming limita-
tions posed by traditional machine learning methods, which 
may not fully account for physical principles.

Recent developments in physics-informed design methods 
utilize neural networks and other machine learning frameworks 
that incorporate various physical laws, such as heat conduction, 
electromagnetic theory, and multi-field coupling dynamics. For 
instance, Physics-Informed Neural Networks (PINNs) have been 
applied to solve partial differential equations that govern the 
behavior of microsystems, enabling rapid simulation of thermal 
distribution, stress, and electromagnetic fields under varying 
operational conditions. By embedding physical constraints into 
the model architecture, PINNs allow for the direct integration 
of physics-based principles, improving the interpretability and 
accuracy of predictions [4].

To address this, researchers have recently developed neural 
network models driven by domain knowledge to ensure that 
solutions adhere to corresponding physical principles. Pro-
posed [4] a neural network combined with transfer functions 
to achieve rapid characterization of the amplitude-frequency 
response of interdigital band-pass filters, the structure of the 
proposed MOR-based neuro-TF model is shown in (Figure 4A), 
yielding a testing error of only 0.78%. Introduced [4] a neural 
network framework incorporating electromagnetic domain 
knowledge, using a quadratic approximation method to extract 
poles and residues, and subsequently employed the established 
neural network framework for the rapid characterization of mi-
crowave devices, achieving a testing error of 1.60%. Proposed 
[4] a thermal distribution prediction model for microsystems 

based on a physics-informed neural network, the overall ar-
chitecture of the proposed PINN is shown in (Figure 4B). Fast 
prediction of heat sink heat distribution is achieved by data-
free simulation, and the simulation results are consistent with 
the actual reference data. Proposed [4] a 3D CNN model based 
on the heat transfer equation to predict the thermal response 
of FC-BGA packaging. The proposed the physical-based deep 
learning model is shown in (Figure 4C). The proposed model can 
rapidly and accurately predict the temperature distribution of 
FC-BGA models with various materials and complex structures. 
The solution speed of the proposed model is more than 400 
times faster than that of the finite element model. Proposed [4] 
a fast full-chip numerical analysis method using an enhanced 
Physics-Informed Neural Network (PINN) framework, which is 
shown in (Figure 4D), enabling design space exploration and un-
certainty quantification. The solution speed of the physics-in-
formed neural network for the heat equation, considering both 
training and inference time, is more than six times faster than 
COMSOL, with an average absolute error of 0.47 K. Proposed [4] 
a novel Physics-Informed Neural Network (PINN)-based method 
to construct a multi-physics solver, establishing a fast charac-
terization framework combining FDTD and PINN to accurately 
represent multi-physics field distributions, and the proposed 
model is shown in (Figure 4E). Developed [4] the traditional 
ANN into their newly proposed Correlation Drive Neural Net-
work (CDNN) for predicting solder joint fatigue and creep, and 
the schematic describing the process of the proposed correla-
tion-driven neural network is shown in (Figure 4F). Proposed 
[4] a physics-based nested neural network model consisting of 
a material neural network and a mechanical neural network for 
predicting the solder joint lifespan of fan-out WLCSPs and the 
proposed physics-based nested-ANN model is shown in (Figure 
4G). The model calculates equivalent strain, von Mises stress, 
and deformation based on material coefficients and geological 
material properties, with a computation time of 13.2 seconds, 
improving work efficiency, reducing computation time, and ac-
celerating packaging reliability assessment. 
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Figure 4: (A) Structure of the proposed MOR-based neuro-TF 
model [42]; (B) Overall architecture of the proposed PINN [44]; (C) 
Proposed the physical-based deep learning model [45]; (D) Overall 
frameworks of the proposed ThermPINN [46]; (E) Physics-informed 
neural networks for coupled electromagnetic-thermal model [47]; 
(F) Schematic describing the process of the proposed correlation-
driven neural network [48]; (G) Illustration of physics-based nest-
ed-ANN model [49].

In summary, the integration of domain knowledge into neu-
ral network models has greatly improved the accuracy and ef-
ficiency of simulations in fields such as electromagnetic charac-
terization, thermal prediction, and mechanical stress analysis. 
These models, including physics-informed neural networks, 
have demonstrated remarkable speed and precision in predict-
ing complex behaviors, such as temperature distribution in FC-
BGA packaging and fatigue in solder joints with a detailed com-
parison shown in (Table 3). By embedding physical principles 
into the models, researchers have been able to significantly re-
duce computation time while maintaining high accuracy, mak-
ing these techniques highly effective for optimizing the perfor-
mance and reliability of various microsystems.

Discussion and outlook

From the design examples discussed in this paper, it is evident 
that artificial intelligence methods have been widely applied in 
single-field and multi-field pre-optimization and prediction for 
integrated circuits in robotics. In multi-field design contexts, 
traditional machine learning techniques have primarily been 
used for applications such as high-speed signal eye diagrams, 
crosstalk, parasitic parameters, frequency response in electri-

Table 3: Comparison of physics-informed design methods applied to design in microsystems.

Ref Application Method Input Output

[42]
Prediction of frequency domain response of an 
interdigital bandpass filter

Neuro-TF Geometric dimensions and frequency of the filter. Frequency domain response

[43]
Predicting the frequency domain response of a 
waveguide filter

Neuro-TF Geometric dimensions and frequency of the filter. Frequency domain response

[44]
Predicting the temperature distribution of a 
microprocessor.

PINN Temporal and spatial information of microprocessor
Transient temperature distri-
bution

[45]
Predicting the thermal response of the FC-BGA 
package

PINN
Voxel model with material property tensors and initial 
field tensor, interior points tensor with one material 
and boundary points with boundary condition

Thermal field difference 
quotient

[46] Predicting the full chip thermal response ThermPINN Ambient temperature effective convection coefficient Temperature

[47]
Arbitrary shape loss dielectrics and steady-state 
temperature distribution

PINN
Dissipated power density from FDTD and
domain properties

Steady-state temperature
distribution (T)

[48] Predicted life of solder joints of electronic devices CDNN Thermal load, geometric parameters, joint zone Creep or fatigue

[49] Predict the solder joint life of fan-out WLCSPs PINN Material coefficient, geological material properties
Equivalent strain, von Mises 
stress, and deformation

cal fields, maximum temperature, thermal resistance, pumping 
power, equivalent thermal conductivity, and thermal response 
in thermal fields, as well as stress and solder joint fatigue life 
in stress fields. Due to the structural limitations of traditional 
neural networks, these methods are often focused on predic-
tions and optimizations of limited, specific performance met-
rics in integrated circuits. While they have, to some extent, re-
placed traditional numerical and equivalent methods, balancing 
prediction accuracy with design efficiency, they generally lack 
physical interpretability and often produce physically inconsis-
tent singular points during prediction, requiring large datasets 
for training. Physics-informed neural networks (PINNs), which 
incorporate physical information in transfer functions and loss 
functions, significantly enhance the interpretability and gen-
eralizability of prediction results. They also greatly reduce the 
dependency on training data, potentially eliminating the need 
for a training set altogether. This substantially improves both 
the interpretability and predictive accuracy of neural networks. 
PINNs are often applied in scenarios involving broadband fre-
quency domain responses, temperature and stress distributions 
across entire solution domains, and solder joint fatigue life, pro-
viding enhanced spatial solving capabilities and time-frequency 
domain dimensionality reduction.

Looking ahead, as robots and electronic systems continue 
to shrink in size, multi-field coupling effects will become even 
more pronounced, and balancing trade-offs between multiple 
software iterations and performance metrics will increase in 
complexity, reducing the efficiency of traditional analysis meth-
ods. While traditional neural networks and PINNs have demon-
strated developmental potential in multi-field coupling design 
by significantly improving design efficiency with minimal sacri-
fice in solution precision, several challenges remain:

Modeling challenges with complex geometries: As electron-
ic system designs become increasingly complex, geometries will 
grow more intricate. PINNs must encode PDEs and boundary 
conditions into the loss function, and the priority of multiple 
loss functions during training requires careful weighting to en-
sure efficient model training.

Inverse design: Currently, most research focuses on pre-
dicting performance parameters based on design parameters. 
However, real-world engineering problems often require per-
formance specifications first, followed by determination of de-
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sign parameters. Developing inverse design methods to address 
these needs is crucial.

Cross-scale issues: The complexity of electronic system de-
sign spans multiple scales, and leveraging PINNs for cross-scale 
training involves balancing prediction accuracy with prediction 
time. Rapidly predicting physical field distributions using small 
sample data is especially important.

Conclusion

This paper presents the application of AI technologies in the 
performance prediction and optimization design of microsys-
tem integrated circuits. It summarizes and compares the use of 
AI in the single-field and multi-field design of microsystems for 
robotics, as well as the application of physics-informed neural 
network methods in the multi-field design of robotic microsys-
tems. Finally, various machine learning methods are discussed 
and compared. The main conclusions are as follows:

Neural networks can be used for the rapid prediction and 
optimization of single-field and multi-field performance of mi-
crosystems; however, ensuring prediction accuracy requires a 
large amount of data to train the neural networks.

The combination of neural networks and heuristic optimiza-
tion algorithms can accelerate multi-field optimization design 
for microsystems, reducing iteration time at each step.

Physics-informed neural networks ensure that the predic-
tion results meet physical constraints, while further reducing 
the amount of required data and improving both prediction ac-
curacy and generalization capabilities.
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